A Common Runtime for High Performance Data Analysis

نویسندگان

  • Shoumik Palkar
  • James J. Thomas
  • Anil Shanbhag
  • Malte Schwarzkopt
  • Saman P. Amarasinghe
  • Matei Zaharia
چکیده

Modern analytics applications combine multiple functions from different libraries and frameworks to build increasingly complex workflows. Even though each function may achieve high performance in isolation, the performance of the combined workflow is often an order of magnitude below hardware limits due to extensive data movement across the functions. To address this problem, we propose Weld, a runtime for data-intensive applications that optimizes across disjoint libraries and functions. Weld uses a common intermediate representation to capture the structure of diverse dataparallel workloads, including SQL, machine learning and graph analytics. It then performs key data movement optimizations and generates efficient parallel code for the whole workflow. Weld can be integrated incrementally into existing frameworks like TensorFlow, Apache Spark, NumPy and Pandas without changing their user-facing APIs. We show that Weld can speed up these frameworks, as well as applications that combine them, by up to 30×.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preventing Key Performance Indicators Violations Based on Proactive Runtime Adaptation in Service Oriented Environment

Key Performance Indicator (KPI) is a type of performance measurement that evaluates the success of an organization or a partial activity in which it engages. If during the running process instance the monitoring results show that the KPIs do not reach their target values, then the influential factors should be identified, and the appropriate adaptation strategies should be performed to prevent ...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

Design and Evaluation of a High-Level Interface for Data Mining

This paper presents a case study in developing an application class specific high-level interface for shared memory parallel programming. The application class we focus on is data mining. With the availability of large datasets in areas like bioinformatics, medical informatics, scientific data analysis, financial analysis, telecommunications, retailing, and marketing, data mining tasks have bec...

متن کامل

A New Robust Bootstrap Algorithm for the Assessment of Common Set of Weights in Performance Analysis

The performance of the units is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. These weights can be determined by data envelopment analysis (DEA) models. The inputs and outputs of the related (Decision Making Unit) DMU are assessed by a set of the weights obtained via DEA for each DMU. In addition, the weights are not generally common, but rather, they are ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017